
Negative Mixture Models via Squaring: Representation and Learning

Lorenzo Loconte1 Stefan Mengel2 Nicolas Gillis3 Antonio Vergari1

1School of Informatics, University of Edinburgh, UK
3Department of Mathematics and Operational Research, Faculté polytechnique, Université de Mons, Belgium

2Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), France

Abstract

Negative mixture models (NMMs) can potentially
be more expressive than classical non-negative
ones by allowing negative coefficients, thus greatly
reducing the number of components and param-
eters to fit. However, modeling NMMs features
a number of challenges, from ensuring that nega-
tive combinations still encode valid densities or
masses, to effectively learning them from data.
In this paper, we investigate how we can model
both shallow and hierarchical NMMs in a generic
framework, via squaring. We do so by represent-
ing NMMs as probabilistic circuits (PCs) – struc-
tured computational graphs that ensure tractability.
Then, we show when and how we can represent
these squared NMMs as tensorized computational
graphs efficiently, while theoretically proving that
for certain function classes including negative pa-
rameters can exponentially reduce the model size.

1 INTRODUCTION

Finite mixture models (MMs) are a staple in tractable proba-
bilistic reasoning and learning [McLachlan et al., 2019]. By
combining simple probability mass or density functions in
a convex combination, they can represent more expressive
distributions. Given a set of random variables X, a MM with
K components encodes a function p over X as

p(X) =
∑K

i=1
θipi(X),

∑K

i=1
θi = 1, θi ≥ 0, (1)

where each pi is a base distribution, also called mixture com-
ponent, and Θ = {θi}Ki=1 are the mixture parameters. The
convexity constraint on Θ is a sufficient and handy condition
to guarantee that p(X) encodes a valid probability distribu-
tion, i.e., its output is always non-negative, and it integrates

(a) Samples (b) GMM-2tono metallico standard (c) GMM-16 (d) NGMM-2

Figure 1: Negative mixture models can be more expres-
sive than their non-negative counterpart. Density func-
tions estimated from points sampled from a ring-shaped
distribution (a) by a Gaussian Mixture Model (GMM) with
2 and 16 components (figures (b) and (c)) and a GMM al-
lowing negative weights (NGMM) with 2 components (d).
See Appendix G.1 for details.

to 1.1 Classical examples of MMs with non-negative param-
eters are Gaussian mixtures (GMMs) and hidden Markov
models [Rabiner and Juang, 1986].

However, imposing a convex combination over Θ is not a
necessary constraint to model valid distributions. Relaxing it
can yield more expressive MMs that require far fewer com-
ponents, and hence parameters, to fit complex distributions
(Fig. 1). While appealing, MMs allowing negative param-
eters – called negative MMs (NMMs) or non-monotonic
models [Shpilka and Yehudayoff, 2010] – are harder to rep-
resent and learn, as one would need to find alternative ways
to enforce the non-negativity and integrability of p(X).

So far, this problem has been investigated for simple para-
metric mixture families such as negative mixture of Weibulls
[Jiang et al., 1999] and GMMs for which one can derive
constraints in closed form [Zhang and Zhang, 2005], or
apply a tensor power method to enforce them [Rabusseau
and Denis, 2014]. In this paper, we propose a generic strat-
egy to represent valid NMMs: squaring a base mixture that
supports negative parameters (Section 2).

We then extend this approach to to compactly represent
deep NMMs within the framework of probabilistic circuits

1We abuse the integral notation also for discrete variables.

Accepted for the 6th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2023).

mailto:<l.loconte@sms.ed.ac.uk>?Subject=Negative Mixture Models via Squaring

(PCs). There, deep NMMs are encoded as tensorized compu-
tational graphs with structural properties that allow efficient
squaring (Section 3). We theoretically prove that PCs with
negative parameters, also called non-monotonic circuits,
constructed in this way can encode distributions with expo-
nentially fewer parameters than their monotonic counterpart,
i.e., PCs with only non-negative parameters (Theorem 3.1).

We complement this generic algorithmic recipe for more
flexible MMs and PCs with the signed-log-sum-exp trick
(Section 3.1), a way to perform computations in log-space
while allowing for negative values, which is crucial to retain
numerical stability for very deep circuits. Finally, our ex-
periments (Section 4) support the advantage of introducing
negative parameters for both shallow and deep MMs.

2 NEGATIVE MIXTURES BY SQUARING

We define a squared NMM with K components as a possibly
unnormalized distribution over variables X encoding

c2(X) =

(∑K

i=1
θici(X)

)2

=

K∑
i=1

K∑
j=1

θiθjci(X)cj(X),

where ci are mixture components and the mixture param-
eters θi ∈ R are unconstrained. Note that by construction
c2 is always non-negative, but can support negative param-
eters, and it can be written as a shallow mixture having(
K
2

)
components, each computing some ci(X)cj(X) with

possibly negative mixture parameters 2θiθj if i ̸= j and
θ2i otherwise. Furthermore, c2(X) can be easily renormal-
ized as to model the distribution p(X) = c2(X)/Z, where
Z =

∫
c2(x)dX =

∑K
i=1

∑K
j=1 θiθj

∫
ci(x)cj(x)dX de-

notes the normalization constant. Computing Z requires
evaluating

(
K
2

)
integrals over products of components.

Therefore, we require that components ci are chosen from
a parameteric family that guarantees that their product can
be tractably integrated. This property is satisfied for expo-
nential families [Seeger, 2005]: e.g., the product of two
Gaussians (resp. Categorical) distributions is another Gaus-
sian [Rasmussen and Williams, 2005] (resp. Categorical),
up to one normalization constant that can be computed ef-
ficiently. However, note that we are not restricted to com-
ponents that model valid density functions, and allowing
a wider class of (even negative) functions can increase the
expressivity of MMs (see Section 3 and Appendix C).

Learning squared negative MMs can be done by
maximum-likelihood estimation (MLE). Given a set D of
training examples, we can write the MLE objective as∑

x∈D
log(c2(x)/Z) = −|D| logZ+2

∑
x∈D

log |c(x)|.

Therefore, materializing the squared mixture with
(
K
2

)
com-

ponents is needed only for computing Z or, more generally,
to perform marginalization.

3 DEEP NEGATIVE MIXTURES VIA
SQUARED PCS

While this squared formulation allows for NMMs that can
represent more components than MMs within the same pa-
rameter budget, they are still limited to shallow mixtures.
In this section we generalize them to deep mixtures within
the framework of circuits (PCs) [Vergari et al., 2020], struc-
tured computational graphs allowing to recursively “stack”
different mixtures. By representing deep NMMs as PCs we
will be able to precisely characterize when we can allow
negative parameters and keep inference tractable.

A circuit c is a parametrized computational graph encoding
a function c(X) and consisting of three kinds of computa-
tional units: input, product and sum units. An input unit n
models a simple, and tractable, function ln over a prede-
fined set of variables, also called its scope and denoted as
sc(n) ⊆ X. A sum (resp. product) unit n defines a func-
tion

∑
i∈in(n) θici(sc(ci)), parameterized by θi ∈ R (resp.∏

i∈in(n) ci(sc(ci))), over its scope, defined as the union of
the scopes of its inputs, which we denote with in(n).

A probabilistic circuit (PC) is a circuit that encodes a non-
negative function , thus representing an unnormalized distri-
bution. To efficiently renormalize it, we require the PC to
have two structural properties: smoothness and decompos-
ability (see Definition A.2 and Proposition A.1). Shallow
MMs can be readily represented as “flat” smooth and decom-
posable PCs equipped with a single sum unit. Alternatively,
one can “flatten” a deep PC into a shallow mixture with
a number of components that is exponential in the depth
of the circuit [Choi et al., 2020], hence deep PCs are more
succinct than vanilla shallow MMs. Next, we generalize
squared NMMs to squared deep circuits.

Tractable squaring of circuits. If we allow a circuit c to
support negative parameters (and possibly encode a nega-
tive function), we can retrieve a PC by computing its square
c2 = c · c. Note that simply introducing a product unit
over two copies of c would break decomposability, a crucial
property required to renormalize the c2 (Proposition A.1).
Fortunately, we can tractably compute the square and ob-
tain a decomposable representation for c2 if c is structured-
decomposable, as defined next.

Definition 3.1 (Structured-decomposability [Pipatsrisawat
and Darwiche, 2008, Choi et al., 2020]). A circuit c is
structured-decomposable if (1) it is smooth and decompos-
able , and (2) any pair of product units n,m in c having the
same scope decompose their scope in the same way.

Proposition 3.1 (Tractable square [Vergari et al., 2021]).
Let c be a structured-decomposable circuit. Constructing
the squared circuit c2 as a decomposable circuit having size
O(|c|2) can be done in time O(|c|2), where |c| denotes size
of c (i.e., the number of edges of the computational graph).
Moreover, c2 is also structured-decomposable.

2

Algorithm 1 squareTensorizedCircuit(c,R)
1: Input: A structured-decomposable and tensorized cir-

cuit c defined on a region graphR.
2: Output: The tensorized squared circuit c2, defined on

the same region graphR.
3: ifR is partitioned into (Rl,Rr) then
4: cl, cr ← retrieveSubCircuits(c,Rl,Rr)
5: c2l ← squareTensorizedCircuit(cl,Rl)
6: c2r ← squareTensorizedCircuit(cr,Rr)
7: c2 ← squareAndConnectLayer(c, c2l , c

2
r)

8: else ▷R is an input region
9: c2 ← c⊗ c ▷ c is a layer of input units

10: return c2

Succinctness result. By squaring a structured-
decomposable circuit, we increase the number of
components of its sum units, thus increasing its expressive-
ness by a polynomial factor. This works also for monotonic
circuits [Valiant, 1979], i.e., circuits with non-negative
parameters only. However, if we square a non-monotonic
circuit, i.e., supporting negative parameters, we can obtain
a non-monotonic PC which can be exponentially more
compact than a monotonic one, as we formally prove in the
following theorem.

Theorem 3.1. There is a class of non-negative functions
F over variables X that can be compactly represented as
shallow squared NMMs (and hence squared non-monotonic
PCs) but for which the smallest structured-decomposable
monotonic PC computing any F ∈ F has size 2Ω(|X|).

We prove it in Appendix B.1 by showing a lower bound
for a variant of the unique disjointness problem [Fiorini
et al., 2015]. Intuitively, this result tells us that, given a fixed
number of parameters, structured-decomposable and non-
monotonic PCs can potentially be far more expressive than
their monotonic counterparts. Lastly, we observe there can
be no advantage in squaring certain classes of circuits, e.g.,
those supporting tractable MAP inference via determinism
(see Definition A.4), as we prove in Proposition B.3.

Squaring tensorized circuits. A recipe to build mod-
ern deep PCs such as RAT-SPNs [Peharz et al., 2019],
EiNets [Peharz et al., 2020] and HCLTs [Liu and Van den
Broeck, 2021] is to define a hierarchical variable partitioning
that dictates how sets of variables recursively factorize, also
called a region graph [Dennis and Ventura, 2012], denoted
as R, and then stack tensorized product and sum layers
according to the partitioning defined by R. Algorithm 1
illustrates our simplified algorithm to square a structured-
decomposable and tensorized circuit c defined on a region
graph R, as to compactly output c2 in tensorized form.
There, squareAndConnectLayer is a generic function that
can be specialized in the case of RAT-SPNs and EiNets or
HCLTs, as detailed in Algorithm D.1. Note that this does
not increase the number of parameters of the original cir-

cuit. Similarly to training NMMs by MLE, evaluating the
tensorized c2 is required only to compute the normalization
constant Z which can be done once per batch during training
or only once if c2 is given.

Expressive input polynomials. As anticipated in Section 2,
in the framework of squared non-monotonic PCs, we are
allowed to use not only distributions such as exponential
families, but any (negative) function class whose product
can be still tractably integrated. Polynomials defined on
fixed intervals are an appealing family for this purpose, as
the product of two polynomials is again a polynomial with
higher degree that can be integrated efficiently. We experi-
ment with piecewise polynomials such as B-splines, which
are a linear combination of basis functions. Integrating prod-
ucts of B-splines can be done efficiently with several meth-
ods [Mørken, 1991, Vermeulen et al., 1992]. We discuss
B-splines as input units for squared non-monotonic PCs in
detail in Appendix E.

3.1 THE SIGNED LOG-SUM-EXP TRICK

Modern PC architectures can encode very deep mixture
models in computational graphs with billions of product
units. Computing probability values in such circuits, and
in their squared counterparts, can easily lead to underflow
or overflows (see Appendix F). This can be addressed in
monotonic PCs by performing computations in the log-space
and utilize the log-sum-exp trick [Blanchard et al., 2021].
However, this is not possible for non-monotonic circuits,
as the logarithm of negative values is undefined. To solve
this, we propose the signed log-sum-exp trick, in which
we represent non-zero real values v ∈ R<>0 in terms of
the logarithm of their absolute value log |v| and their sign
sign(v) ∈ {−1, 1}, i.e., v = sign(v) exp(log |v|).
Let n be a product unit over X that computes cn(X) =∏

i∈in(n) ci(Xi), for some set of input units in(n) defined
over a partitioning X1, . . . ,X|in(n)| of X. We can compute
cn(X) in terms of log |cn(X)| and sign(cn(X)) as

log |cn(X)| =
∑

i∈in(n)
log |ci(Xi)|,

sign(cn(X)) =
∏

i∈in(n)
sign(ci(Xi)).

Similarly, let n be a sum unit over X that computes
cn(X) =

∑
i∈in(n) θici(X), where i are units over X and

θi ∈ R. To compute cn(X) in a numerically stable way, we
(i) compute it in terms of log |cn(X)| and sign(cn(X)), and
(ii) leverage the traditional log-sum-exp trick, i.e.,

log |cn(X)| = α+ log |S| , sign(cn(X)) = sign (S) (2)

where S :=
∑

i∈in(n) θi sign(ci(X)) exp(log |ci(X)| − α)

with S ̸= 0, and α = max{log |ci(X)|}i∈in(n). It follows
then that cn(X) = sign(cn(X)) exp(log |cn(X)|), where
log |cn(X)| and sign(cn(X)) are computed as in Eq. (2).

3

Figure 2: Negative parameters increase the expressiveness of mixture models. For each bivariate density, we show the
ground truth and the density function estimated by a monotonic PC, a squared monotonic PC, and a squared non-monotonic
PC with B-splines as input units and with the same number of parameters.

−1 0
+

±2
POWER

−9 0
+

±2
GAS

−26 −22
+

±2
HEPMASS

−54 −35
+

±2
MINIBOONE

Model POWER GAS HEPMASS MINIBOONE

Gaussian -7.74±0.02 -3.58±0.75 -27.93±0.02 -37.24±1.07
MADE -3.08±0.03 3.56±0.04 -20.98±0.02 -15.59±0.50

RealNVP 0.17±0.01 8.33±0.14 -18.71±0.02 -13.84±0.52

PC + (G) 0.06±0.01 3.50±0.02 -22.40±0.02 -30.98±0.43
PC + (S) 0.11±0.01 -3.51±0.02 -25.76±0.01 -41.13±0.45

PC ±2(G) 0.13±0.01 4.78±0.02 -21.31±0.02 -26.98±0.44
PC ±2 (S) 0.41±0.01 2.61±0.01 -21.92±0.01 -31.18±0.46

Figure 3: Squared non-monotonic PCs are more expres-
sive with the same model size. Above figures: test average
log-likelihoods of squared non-monotonic PCs (±2, vertical)
and monotonic PCs (+, horizontal) paired by hyperparame-
ters. Below table: best test average log-likelihoods and two
standard errors. For PCs we show results given by using
either Gaussian (G) or B-splines (S) as input units, and base-
line results are taken from Papamakarios et al. [2017].

4 EXPERIMENTS

Since squared non-monotonic PCs would have a higher num-
ber of components than monotonic PCs (Section 2), we first
need to disentangle the increased number of components
given by squaring and the presence of negative parameters.
Then, we empirically show that squared non-monotonic
PCs are more expressive than monotonic PCs for density
estimation given a fixed number of parameters.

Higher number of components in squared circuits. We
perform experiments on bivariate synthetic data sets by com-
paring squared non-monotonic PCs and squared PCs whose
parameters are enforced to be non-negative via exponen-
tiation. Moreover, we leverage splines as input units for

all PCs, as they can encode flexible functions (Section 3).
For details about the hyperparameters see Appendix G.4.
Fig. 2 shows the density functions estimated by monotonic
PCs, their squared version, and squared non-monotonic PCs
with the same number of parameters. While squaring mono-
tonic PCs can boosts distribution estimation thanks to the
higher number of components, squared non-monotonic PCs
are able to almost perfectly capture the data distribution.
This result is consistent with the average log-likelihoods
computed on unseen samples we show in Appendix G.5.

Squared non-monotonic PCs are more expressive. Next
we evaluate both monotonic and squared non-monotonic
PCs on data sets taken from the UCI repository [Dua and
Graff, 2017]: POWER [Hebrail and Berard, 2012], GAS
[Fonollosa et al., 2015], HEPMASS [Baldi et al., 2016] and
MINIBOONE [Roe et al., 2004] (see Appendix G.2). In Ap-
pendix G.3 we detail the architecture of PCs. We search for
several hyperparameters (see Appendix G.4), including the
input units to be either Gaussian or B-splines (Section 3).
To allow a fair comparison, we evaluate PCs on the same
hyperparameters and in terms of log-likelihood computed
on unseen samples. In addition, we compare against a sin-
gle multivariate Gaussian and two deep generative models:
MADE [Germain et al., 2015] and RealNVP [Dinh et al.,
2016]. Fig. 3 shows that squared non-monotonic PCs es-
timate the density function better than monotonic PCs on
almost every configuration of hyperparameters we choose.

5 CONCLUSIONS

Squared non-monotonic PCs open up several interesting
future directions in tractable probabilistic modeling. First,
we plan to efficiently learn their structure [Di Mauro et al.,
2017] and use them for imposing constraints on neural net-
works [Ahmed et al., 2022]. Second, we will investigate
whether it is possible to distill large-scale monotonic PCs
into way smaller non-monotonic ones, as Theorem 3.1 im-
plicitly suggests, as well as other intractable models. Finally,
we plant to retrieve a probabilistic semantic for the inner
units, as well as to train by EM and to sample efficiently.

4

Acknowledgements

We thank Raul Garcia-Patron Sanchez for pointing out the
relationship of our work with the Born rule in quantum
physics. We acknowledge Chris Williams for highlighting
the similarities between our work and the literature on es-
timating the square root of density functions. Finally, we
are grateful to Patrick Tourniaire who carried out prelimi-
nary experiments on GMMs with negative parameters on
2D data.

References

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van
den Broeck, and Antonio Vergari. Semantic probabilistic
layers for neuro-symbolic learning. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, edi-
tors, Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=o-mxIWAY1T8.

Pierre Baldi, Kyle Cranmer, Taylor Faucett, Peter Sadowski,
and Daniel Whiteson. Parameterized machine learning
for high-energy physics. ArXiv, abs/1601.07913, 2016.

Pierre Blanchard, Desmond J Higham, and Nicholas J
Higham. Accurately computing the log-sum-exp and
softmax functions. IMA Journal of Numerical Analysis,
41(4):2311–2330, 2021.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic modeling. Technical report, University of
California, Los Angeles (UCLA), 2020.

Adnan Darwiche. Decomposable negation normal form. J.
ACM, 48:608–647, 2001.

Carl de Boor. Subroutine package for calculating with b-
splines. 1971.

Alexis de Colnet and Stefan Mengel. A compilation of
succinctness results for arithmetic circuits. arXiv preprint
arXiv:2110.13014, 2021.

Ronald De Wolf. Nondeterministic quantum query and com-
munication complexities. SIAM Journal on Computing,
32(3):681–699, 2003.

Aaron Dennis and Dan Ventura. Learning the architecture
of sum-product networks using clustering on variables.
Advances in Neural Information Processing Systems, 25,
2012.

Aaron W. Dennis. Algorithms for learning the structure
of monotone and nonmonotone sum-product networks,
2016.

Nicola Di Mauro, Antonio Vergari, Teresa MA Basile, and
Floriana Esposito. Fast and accurate density estimation
with extremely randomized cutset networks. In Machine
Learning and Knowledge Discovery in Databases: Eu-
ropean Conference, ECML PKDD 2017, Skopje, Mace-
donia, September 18–22, 2017, Proceedings, Part I 10,
pages 203–219. Springer, 2017.

Laurent Dinh, Jascha Narain Sohl-Dickstein, and Samy
Bengio. Density estimation using real nvp. ArXiv,
abs/1605.08803, 2016.

Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017. URL http://archive.ics.uci.
edu/ml.

Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj
Tiwary, and Ronald De Wolf. Exponential lower bounds
for polytopes in combinatorial optimization. Journal of
the ACM (JACM), 62(2):1–23, 2015.

Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and San-
tiago Marco. Reservoir computing compensates slow
response of chemosensor arrays exposed to fast varying
gas concentrations in continuous monitoring. Sensors
and Actuators B-chemical, 215:618–629, 2015.

Mathieu Germain, Karol Gregor, Iain Murray, and
H. Larochelle. Made: Masked autoencoder for distribu-
tion estimation. In International Conference on Machine
Learning, 2015.

Nicolas Gillis. Nonnegative matrix factorization. SIAM,
Philadelphia, 2020.

Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert,
and Juan Ignacio Cirac. Expressive power of tensor-
network factorizations for probabilistic modeling, with
applications from hidden Markov models to quantum
machine learning. In Neural Information Processing
Systems, 2019.

Georges Hebrail and Alice Berard. Individual
household electric power consumption. UCI
Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C58K54.

Xia Hong and Junbin Gao. Estimating the square root
of probability density function on riemannian manifold.
Expert Systems - The Journal of Knowledge Engineering,
38(7), 2021.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Ex-
pander graphs and their applications. Bulletin of the
American Mathematical Society, 43(4):439–561, 2006.

R Jiang, MJ Zuo, and H-X Li. Weibull and inverse weibull
mixture models allowing negative weights. Reliability
Engineering & System Safety, 66(3):227–234, 1999.

5

https://openreview.net/forum?id=o-mxIWAY1T8
https://openreview.net/forum?id=o-mxIWAY1T8
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR (Poster), 2015.

Wenliang Li, Danica J. Sutherland, Heiko Strathmann, and
Arthur Gretton. Learning deep kernels for exponential
family densities. ArXiv, abs/1811.08357, 2018.

Anji Liu and Guy Van den Broeck. Tractable regularization
of probabilistic circuits. In Neural Information Process-
ing Systems, 2021.

Ulysse Marteau-Ferey, Francis R. Bach, and Alessandro
Rudi. Non-parametric models for non-negative functions.
In NeurIPS, 2020.

James Martens and Venkatesh Medabalimi. On the expres-
sive efficiency of sum product networks. arXiv preprint
arXiv:1411.7717, 2014.

Geoffrey J McLachlan, Sharon X Lee, and Suren I Rath-
nayake. Finite mixture models. Annual review of statistics
and its application, 6:355–378, 2019.

Knut Mørken. Some identities for products and degree
raising of splines. Constructive Approximation, 7:195–
208, 1991.

Georgii S. Novikov, Maxim E. Panov, and Ivan V. Oseledets.
Tensor-train density estimation. In UAI, volume 161 of
Proceedings of Machine Learning Research, pages 1321–
1331. AUAI Press, 2021.

George Papamakarios, Iain Murray, and Theo Pavlakou.
Masked autoregressive flow for density estimation. ArXiv,
abs/1705.07057, 2017.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Martin Trapp, Xiaoting Shao, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Amir Globerson and Ricardo Silva, editors,
UAI, volume 115 of Proceedings of Machine Learning
Research, pages 334–344. AUAI Press, 2019.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In ICML, volume 119 of Proceedings of Machine
Learning Research, pages 7563–7574. PMLR, 2020.

Les A. Piegl and Wayne Tiller. The nurbs book. In Mono-
graphs in Visual Communication, 1995.

Aluisio Pinheiro and Brani Vidakovic. Estimating the square
root of a density via compactly supported wavelets. Com-
putational Statistics and Data Analysis, 25(4):399–415,
1997.

Knot Pipatsrisawat and Adnan Darwiche. New compilation
languages based on structured decomposability. In AAAI,
volume 8, pages 517–522, 2008.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In IEEE International Confer-
ence on Computer Vision Workshops (ICCV Workshops),
pages 689–690. IEEE, 2011.

Lawrence Rabiner and Biinghwang Juang. An introduction
to hidden Markov models. ieee assp magazine, 3(1):4–16,
1986.

Guillaume Rabusseau and François Denis. Learning neg-
ative mixture models by tensor decompositions. arXiv
preprint arXiv:1403.4224, 2014.

Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian processes for machine learning (adaptive com-
putation and machine learning). 2005.

Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, I. Stancu,
and G. McGregor. Boosted decision trees as an alternative
to artificial neural networks for particle identification. Nu-
clear Instruments & Methods in Physics Research Section
A-accelerators Spectrometers Detectors and Associated
Equipment, 543:577–584, 2004.

Tim Roughgarden et al. Communication complexity (for
algorithm designers). Foundations and Trends® in Theo-
retical Computer Science, 11(3–4):217–404, 2016.

Alessandro Rudi and Carlo Ciliberto. PSD representa-
tions for effective probability models. In NeurIPS, pages
19411–19422, 2021.

Matthias Seeger. Expectation propagation for exponential
families. Technical report, 2005.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits:
A survey of recent results and open questions. Found.
Trends Theor. Comput. Sci., 5:207–388, 2010.

Leslie G. Valiant. Negation can be exponentially powerful.
In Proceedings of the eleventh annual ACM symposium
on theory of computing, pages 189–196, 1979.

Antonio Vergari, YooJung Choi, Robert Peharz, and Guy
Van den Broeck. Probabilistic circuits: Representations,
inference, learning and applications. In Tutorial at the The
34th AAAI Conference on Artificial Intelligence, 2020.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and
Guy Van den Broeck. A compositional atlas of tractable
circuit operations for probabilistic inference. In Advances
in Neural Information Processing Systems, volume 34,
pages 13189–13201, 2021.

Allan H. Vermeulen, Richard H. Bartels, and Glenn R. Hep-
pler. Integrating products of b-splines. SIAM J. Sci.
Comput., 13:1025–1038, 1992.

6

Baibo Zhang and Changshui Zhang. Finite mixture models
with negative components. In Machine Learning and
Data Mining in Pattern Recognition: 4th International
Conference, MLDM 2005, Leipzig, Germany, July 9-11,
2005. Proceedings 4, pages 31–41. Springer, 2005.

7

A CIRCUITS

In Definition A.1 we formalize circuits.

Definition A.1 (Circuit [Choi et al., 2020, Vergari et al.,
2021]). A circuit c is a parametrized computational graph
over variables X encoding a function c(X) and comprising
three kinds of computational units: input, product, and sum.
Each product or sum unit n receives as inputs the outputs of
other units, denoted with the set in(n). Each unit n encodes
a function cn defined as: (i) ln(sc(n)) if n is an input unit,
where ln is a function over variables sc(n) ⊆ X, called its
scope, (ii)

∏
i∈in(n) ci(sc(ni)) if n is a product unit, and (iii)∑

i∈in(n) θici(sc(ci)) if n is a sum unit, with θi ∈ R denot-
ing the weighted sum parameters. The scope of a product
or sum unit n is the union of the scopes of its inputs, i.e.,
sc(n) =

⋃
i∈in(n) sc(i).

A probabilistic circuit (PC) is defined as a circuit Defini-
tion A.1 that encodes a non-negative function. PCs that are
smooth and decomposable (Definition A.2) enable comput-
ing the partition function and, more in general, performing
variable marginalization efficiently (Proposition A.1).

Definition A.2 (Smoothness and Decomposability). A cir-
cuit is smooth if for every sum unit n, its input units depend
all on the same variables, i.e, ∀i, j ∈ in(n) : sc(i) = sc(j).
A circuit is decomposable if the inputs of every product unit
n depend on disjoint sets of variables, i.e, ∀i, j ∈ in(n) i ̸=
j : sc(i) ∩ sc(j) = ∅.

Proposition A.1 (Tractability [Choi et al., 2020]). Let c
be a smooth and decomposable circuit over variables X
whose input units can be integrated efficiently. Then for
any Z ⊆ X and y an assignment to variables in X \ Z,
the quantity

∫
c(y, z)dz can be computed exactly in time

Θ(|c|), where |c| denotes the size of the circuit.

As anticipated in Section 3, the expressive power of squared
non-monotonic and deterministic PCs is the same of mono-
tonic PCs. We prove it formally in Appendix B.2 by lever-
aging the definition of determinism that we show in Defini-
tion A.4.

Definition A.3 (Support [Choi et al., 2020]). In a circuit
the support of a computational unit n over variables X is
defined as the set of value assignments to variables in X
such that the output of n is non-zero, i.e., supp(n) = {x ∈
val(X) | cn(X) ̸= 0}.

Definition A.4 (Determinism [Darwiche, 2001]). A circuit
c is deterministic if for any sum unit n ∈ c its inputs have
disjoint support (Definition A.3), i.e., ∀i, j ∈ in(n), i ̸=
j : supp(i) ∩ supp(j) = ∅.

B PROOFS

B.1 EXPONENTIAL SEPARATION

Theorem 3.1. There is a class of non-negative functions
F over variables X that can be compactly represented as
shallow squared NMMs (and hence squared non-monotonic
PCs) but for which the smallest structured-decomposable
monotonic PC computing any F ∈ F has size 2Ω(|X|).

Proof. For the proof of Theorem 3.1, we start by construct-
ing F by introducing a variant of the unique disjointness
(UDISJ) problem, which seems to have first been introduced
by De Wolf [2003]. The variant we consider here is defined
over graphs, as detailed in the following definition.

Definition B.1 (Unique disjointness function). Consider an
undirected graph G = (V,E), where V denotes its vertices
and E its edges. To every vertex v ∈ V we associate a
Boolean variable Xv and let XV = {Xv | v ∈ V } be the
set of all these variables. The unique disjointness function
of G is defined as

UDISJG(Xv) :=

(
1−

∑
uv∈E

XuXv

)2

. (3)

The UDISJ function as a non-monotonic circuit. We
will construct F as the class of functions UDISJG for
graphs G ∈ G, where G is a family of graphs that
we will choose later. Regardless of the way the class
G is picked, we can compactly represent UDISJG as a
squared structured-decomposable (Definition 3.1) and non-
monotonic circuit as follows. First, we represent the func-
tion c(XV) = 1 −∑uv∈E XuXv as sum unit computing
1 · a(XV) + (−1) · b(XV) where

• a is a circuit gadget that realizes an unnormalized
uniform distribution over the domain of variables in
XV , i.e., a(XV) =

∏
v∈V (1{Xv = 0}+1{Xv = 1})

where 1{Xv = 0} (resp. 1{Xv = 1}) is an indicator
function that outputs 1 when Xv is set to 0 (resp. 1);

• b is another sum unit whose inputs are product
units over the input units 1{Xu = 1} ,1{Xv = 1}
if there is an edge uv in G, i.e., b(XV) =∑

uv∈E 1{Xu = 1} · 1{Xv = 1}.

Note that b may not be smooth, but we can easily smooth
it by adding to every product an additional input that is
a circuit gadget similar to a that outputs 1 for any input
Xuv , where Xuv = XV \ {Xu, Xv}. Since c is structured-
decomposable (Definition 3.1), we can easily multiply it
with itself to realize c2 that would be still a structured-
decomposable circuit whose size is polynomially bounded
as |c2| ∈ O(|c|2) [Vergari et al., 2021]. In particular, in
this case we have that |c| is a polynomial in the number

8

of variables (or vertices) |XV | by the construction above.
Furthermore, note that c2 is non-monotonic as one of its
sum unit has negative parameters (i.e., −1) to encode the
subtraction in Eq. (3).

The lower bound for monotonic circuits. To prove the
exponential lower bound for monotonic circuits in Theo-
rem 3.1, we will use an approach that has been used in sev-
eral other works [Martens and Medabalimi, 2014, de Colnet
and Mengel, 2021]. This approach is based on representing a
decomposable circuit (and hence a structured-decomposable
one) as a shallow mixture whose components are balanced
products, as formalized next.

Definition B.2. Let X be a set of variables. A balanced
decomposable product over X is a function from X to R
that can be written as f(Y)× h(Z) where (Y,Z) is a par-
titioning of X, f and h are functions to R and |X|/3 ≤
|Y| ≤ 2|X|/3.

Theorem B.1 ([Martens and Medabalimi, 2014]). Let F be
a non-negative function over Boolean variables X computed
by a smooth and decomposable circuit c. Then, F can be
written as a sum of N balanced decomposable products
(Definition B.2) over X, with N ≤ |c| in the form2

F (X) =

N∑
k=1

fk(Yk)× hk(Zk),

where (Yk,Zk) is partitioning of X for 1 ≤ k ≤ N . If c is
structured-decomposable, the N partitions {(Yk,Zk)}Nk=1

are all identical. Moreover, if c is monotonic, then all fk, hk

only compute non-negative values.

Intuitively, Theorem B.1 tells us that to lower bound the size
of c we can lower bound N . To this end, we first encode
the UDISJ function (Eq. (3)) as a sum of N balanced prod-
ucts and show the exponential growth of N for a family of
graphs. We start with a special case for a representation in
the following proposition.

Proposition B.1. Let Gn be a matching of size n, i.e., a
graph consisting of n edges none of which share any vertices.
Assume that the UDISJ function (Eq. (3)) for Gn is written
as a product of balanced partitions

UDISJGn
(Y,Z) =

N∑
k=1

fk(Y)× hk(Z),

where for every edge uv in Gn we have that Xu ∈ Y and
Xv ∈ Z. Then N = 2Ω(n).

2In Martens and Medabalimi [2014], Theorem 38, this result
is stated with N ≤ |c|2. The square materializes from the fact
that they reduce their circuits to have all their inner units to have
exactly two inputs, as we already assume, following de Colnet and
Mengel [2021].

To prove the above results, we will make an argument on
the rank of the so-called communication matrix, also known
as the value matrix, for a function F and a fixed partition
(Y,Z).

Definition B.3. Let F be a function over (Y,Z), its com-
munication matrix MF is a 2|Y| × 2|Z| matrix whose rows
(resp. columns) are uniquely indexed by assignments to Y
(resp. Z) such that for a pair of index3 (iY, jZ), the entry at
the row iY and column jZ in MF is F (iY, jZ).

Example B.2. Let us consider a simple matching on 6
vertices, where Y correspond to the first 3 vertices, and Z
to the last 3, and where there is an edge between the first,
second and third vertices of Y and Z. The matrix MF is an
8-by-8 matrix, a row and a column for each assignment of
the 3 binary variables associated to each vertex; it is given
by

Y\Z 000 100 010 001 110 101 011 111
000 1 1 1 1 1 1 1 1
100 1 0 1 1 0 0 1 0
010 1 1 0 1 0 1 0 0
001 1 1 1 0 1 0 0 0
110 1 0 0 1 1 0 0 1
101 1 0 1 0 0 1 0 1
011 1 1 0 0 0 0 1 1
111 1 0 0 0 1 1 1 4

Note that the name UDISJ comes from the fact that
MF (i, j) = 0 if and only if Y and Z share a single en-
try equal to 1.

In the following, we will rely on the following quantity.

Definition B.4 (Non-negative rank). The non-negative rank
of a non-negative matrix A ∈ Rm×n

+ , denoted rank+(A), is
the smallest k such that there exist k nonnegative rank-one
matrices {Ai}ki=1 such that A =

∑k
i=1 Ai. Equivalently,

it is the smallest k such that there exists two non-negative
matrices B ∈ Rm×k

+ and C ∈ Rk×n
+ such that A = BC.

Given a function F written as a sum over N decomposable
products (see Theorem B.1) over a fixed partition (Y,Z),
we now show that the non-negative rank of its communica-
tion matrix MF (Definition B.3) is a lower bound of N .

Lemma B.1. Let F (X) =
∑N

k=1 fk(Y) × hk(Z) where
fk and hk are non-negative functions and let MF be the
communication matrix (Definition B.3) of F for the partition
(Y,Z), then it holds that

rank+(MF) ≤ N.

Proof. This proof is an easy extension of the proof of
Lemma 13 from de Colnet and Mengel [2021]. Assume

3An index iY (resp. jZ) is a complete assignment to Boolean
variables in Y (resp. Z). See Theorem B.2.

9

w.l.o.g. that fk(Y)× hk(Z) ̸= 0 for any complete assign-
ment to Y and Z.4 Let Mk denote the communication ma-
trix of the function fk(Y) × hk(Z). By construction, we
have that MF =

∑N
k=1 Mk. Furthermore, since all values

in MF are non-negative by definition, rank+(Mk) is de-
fined for all k and by sub-additivity of the non-negative
rank we have that rank+(MF) ≤

∑N
k=1 rank

+(Mk). To
conclude the proof, it is sufficient to show that Mk are
rank-1 matrices, i.e., rank+(Mk) = 1. To this end, con-
sider an arbitrary k. Since fk(Y) × hk(Z) ̸= 0, there is
a row in Mk that is not a row of zeros. Say it is indexed
by iY, then its entries are of the form fk(iY) × hk(jZ)
for varying jZ. In any other rows indexed by i′Y we have
fk(i

′
Y) × hk(jZ) = (fk(i

′
Y)/fk(iZ)) × fk(iY) × hk(jZ)

for varying jZ. Consequently, all rows are non-negative mul-
tiples of the iY row, and therefore rank+(Mk) = 1.

To complete the proof of Proposition B.1, we leverage a
known lower bound of the non-negative rank of the com-
munication matrix of the UDISJ problem. The interested
reader can find more information on this result in the books
[Roughgarden et al., 2016, Gillis, 2020] and the references
therein.

Theorem B.3 ([Fiorini et al., 2015]). Let a UDISJ function
defined as in Proposition B.1, and MUDISJ be its communi-
cation matrix over a partition (Y,Z), then it holds that

(3/2)n ≤ rank+(MUDISJ).

Using Theorem B.3 and Lemma B.1, we directly get Propo-
sition B.1. So we have shown that, for a fixed partition of
variables (Y,Z), every monotonic circuit c encoding the
UDISJ function (Eq. (3)) of a matching of size n has size
|c| ≥ 2Ω(n). However, the smallest non-monotonic circuit
encoding the same function has polynomial size in n (see
the construction of the UDISJ function as a circuit above).
Now, to complete the proof for the exponential lower bound
in Theorem 3.1, we need to find a function class F where
this result holds for all possible partitions (Y,Z). Such
function class consists of UDISJ functions over a particular
family of graphs, as detailed in the following proposition.

Proposition B.2. There is a family of graphs G such that for
every graph Gn = (Vn, En) ∈ G we have |Vn| = |En| =
O(n), and any monotonic structured-decomposable circuit
representation of UDISJGn has size 2Ω(n).

Proof. We prove it by constructing a class of so-called ex-
pander graphs, which we introduce next. We say that a
graph G = (V,E) has expansion ε if, for every subset V ′ of
V of size at most |V |/2, there are at least ε|V ′| edges from
V ′ to V \ V ′ in G. It is well-known, see e.g. Hoory et al.

4If this were not the case we could simply drop the term from
the summation, which would clearly reduce the number of sum-
mands.

[2006], that there are constants ε > 0 and d ∈ N and a fam-
ily (Gn)n∈N of graphs such that Gn has at least n vertices,
expansion ε and maximal degree d. We fix such a family
of graphs in the remainder and denote by Vn, resp. En, the
vertex set, resp. the edge set, of Gn.

Let c be a monotonic structured-decomposable circuit of
size N computing UDISJGn

. Then, by using Theorem B.1,
we can write it as

UDISJGn(Y,Z) =

N∑
k=1

fk(Y)× hk(Z) (4)

where (Y,Z) is a balanced partition of XV . Let VY =
{v ∈ Vn | Xv ∈ Y} and VZ = {v ∈ Vn | Xv ∈ Z}. Then
(VY, VZ) form a balanced partition of Vn. By the expansion
of Gn, it follows that there are Ω(n) edges from vertices in
VY to vertices in VZ. By greedily choosing some of those
edges and using the bounded degree of Gn, we can construct
an edge set E′

n of size Ω(n) that is a matching between Y
and Z, i.e., all edges in E′

n go from Y to Z and every vertex
in Vn is incident to only one edge in E′

n. Let V ′
n be the set of

endpoints in E′
n and XV ′

n
⊆ XV be the variables associated

to them. We construct a new circuit c′ from c by substituting
all input units for variables Xv that are not in XV ′

n
by 0.

Clearly, |c′| ≤ |c| and hence all the lower bounds for |c′| are
lower bounds for |c|. Let Y = XV ′

n
∩Y and Z = XV ′

n
∩Z.

By construction c′ computes the function

UDISJG′
n
(Y,Z) =

1−
∑

uv∈E′
n

XuXv

2

which corresponds to solving the UDISJ problem over the
graph G′

n = (V ′
n, E

′
n). From Eq. (4) we get that

UDISJG′
n
(Y,Z) =

N∑
k=1

f ′
k(Y)× h′

k(Z),

where f ′
k (resp. h′

k) are obtained from fk (resp. hk) by set-
ting all the variables not in XV ′

n
to 0. Since c′ is monotonic

by construction and |E′
n| = Ω(n), from Proposition B.1 it

follows that N = 2Ω(n).

Proposition B.2 concludes the proof of Theorem 3.1, as
we showed the existence of family of graphs for which
the smallest structured-decomposable monotonic circuit
computing the UDISJ function over n variables has size
2Ω(n). However, the smallest structured-decomposable non-
monotonic circuit has size polynomial in n, whose construc-
tion has been detailed at the beginning of our proof.

10

B.2 SQUARING DETERMINISTIC CIRCUITS

In Proposition B.3 we show that squaring any non-
monotonic, smooth and decomposable (Definition A.2), and
deterministic (Definition A.4) circuit translates to squaring
its parameters and the functions modeled by its input units.
Moreover, the sum units of the squared circuit would have
the same number of components. As a consequence, there
would be no advantage in terms of expressivity given by
squaring deterministic circuits. Therefore, we are interested
in squaring non-deterministic circuits.

Proposition B.3 (Squaring deterministic circuits). Let c be a
non-monotonic, smooth and decomposable (Definition A.2),
and deterministic (Definition A.4) circuit over variables
X. The squared circuit c2 can be obtained by squaring the
parameters in c and the functions modeled by its input units.
Moreover, the number of components of sum units does not
increase and therefore |c2| = |c|.

Proof. The proof is by induction. Let n ∈ c be a
product unit that computes cn(Z) =

∏
i∈in(n) cn(Zi),

with Z ⊆ X and Z1, . . . ,Z|in(n)| forming a parti-
tioning of Z. Then its squaring computes cn(Z)

2 =∏
i∈in(n) cn(Zi)

2. Now consider a sum unit n ∈ c that
computes cn(Z) =

∑
i∈in(n) θici(Z) with Z ⊆ X

and θi ∈ R. Then its squaring computes cn(Z)
2 =∑

i∈in(n)

∑
j∈in(n) θiθjci(Z)cj(Z). Since c is determinis-

tic (Definition A.4), for any i, j with i ̸= j either ci(Z) or
cj(Z) is zero for any assignment to Z. Therefore, we have
that

cn(Z)
2 =

∑
i∈in(n)

θ2i ci(Z)
2. (5)

The base case is defined on an input unit n that models a
function ln, and hence its squaring is an input unit that mod-
els l2n. By induction c2 is constructed from c by squaring
the parameters of sum units θi and squaring the functions
ln modeled by input units. Moreover, the number of com-
ponents of the squared sum units remain the same, as we
observe in Eq. (5), and therefore |c2| = |c|.

C RELATED WORKS

Squared circuits and the Born rule. In this work we
present a generic framework to derive a class of NMMs
and non-monotonic PCs without imposing constraints on
the parameters: by squaring (Section 3). Squaring a circuit
in order to retrieve a probability distribution is related to
the Born rule in quantum mechanics [Novikov et al., 2021],
which is applied in Born machines [Glasser et al., 2019].
Born machines can be seen as squared circuits in which
product and sum units encode tensor contractions and op-
erate on real (or complex) numbers. However, while Born
machines require specifying a total ordering of variables,

the framework of circuits permits to model possibly more
complex interactions between variables via the specification
of a region graph (Section 3), which can also be learned
from data [Poon and Domingos, 2011].

Shallow negative MMs. The problem of ensuring that a
negative MM still encodes a valid probability distribution
has been investigated for some particular parametric distri-
butions, and this usually involve imposing constraints on
the parameters. Jiang et al. [1999] derived sufficient con-
ditions on the shape and scale of Weibull distributions to
obtain a valid MM, whilst allowing for negative mixture
parameters. An analogous result for Gaussian components
was given by Zhang and Zhang [2005], who showed how
to learn a valid negative GMM by enforcing closed form
constraints on the component covariance matrices. In the
case of spherical Gaussian components, Rabusseau and De-
nis [2014] proposed a technique based on the tensor power
method to estimate the parameters of a valid negative GMM
from data. Rather than estimating the probability density
function p, some works investigated the problem of estimat-
ing its square root

√
p with a (possibly negative) function

f such that p(X) ∝ f2(X), with f being a linear combi-
nation of basis functions [Pinheiro and Vidakovic, 1997].
Moreover, Hong and Gao [2021] showed that the parameters
optimization problem for estimating

√
p can be formulated

as a Riemannian optimization for computational advantage.
All the probabilistic models mentioned above are shallow,
and scaling them to high-dimensional data represents a ma-
jor challenge. By contrast, our framework provides a recipe
for building deep non-monotonic PCs. In addition, we show
their increased expressivity with respect to traditional MMs
both theoretically (Theorem 3.1) and empirically (Section 4)
on high-dimensional data.

Other non-monotonic PCs. Dennis [2016] proposed a
non-monotonic PC architecture consisting of a subtraction
of two monotonic PCs (implemented with a single sum unit
with 1 and −1 as parameters) sharing the same structure.
Pairwise constraints defined on the non-negative param-
eters ensure that the overall PC encodes a non-negative
function. Similarly to the aforementioned NMMs above,
learning while ensuring such constraints are satisfied is not
straightforward. That is, it requires ad-hoc methods based
on parametrization choices of the input units. By contrast,
our framework enables us to learn non-monotonic PCs via
unconstrained gradient descent.

Relationship with PSD models. Positive semi-definite
(PSD) models generalize monotonic mixture models and
sport several advantages including tractable marginaliza-
tion and allowing negative parameters [Marteau-Ferey et al.,
2020, Rudi and Ciliberto, 2021]. Similarly to NMMs men-
tioned above, they represent a class of shallow mixture mod-
els. The relationship between PSD models and the proposed
framework is that PSD models can be compactly repre-

11

sented as a mixture of squared non-monotonic PCs. This
means that non-monotonic PCs must be at least as expres-
sive as PSD models. More formally, a PSD model typically
defines a non-negative function f over variables X of the
form f(x;W, ϕ) = ϕ(x)TWϕ(x), where W ∈ Rk×k

is a PSD matrix and ϕ : val(X) → Rk is a feature
map from the domain val(X) of variables X to Rk. Let
W =

∑m
i=1 λiwiw

T
i be the eigendecomposition of W,

with m = rank(W). Then, f can be rewritten as

f(x;W, ϕ) = ϕ(x)T

(
m∑
i=1

λiwiw
T
i

)
ϕ(x)

=

m∑
i=1

λi(w
T
i ϕ(x))

2

where λi > 0 for 1 ≤ i ≤ m. As such, f can be seen
as a mixture having m squared NMMs as components,
which can be compactly expressed within the framework of
squared non-monotonic PCs (Section 3).

D SQUARING TENSORIZED LAYERS

Algorithm D.1 squareAndConnectLayer(c, c2l , c
2
r)

1: Input: A tensorized circuit c and two squared ten-
sorized circuits c2l , c

2
r .

2: Output: The tensorized squared circuit c2.
3: if c = W(cl ⊙ cr), with W ∈ Rk×k then
4: Let c2 = W(c2l ⊙ c2r)W

T

5: else if c = W(vec(cl ⊗ cr)) , with W ∈ Rk×k2

then
6: Let c2 = W(c2l ⊗ c2r)W

T

7: return c2

Given a structured-decomposable and tensorized circuit c
defined on a region graph [Poon and Domingos, 2011], Al-
gorithm 1 illustrates how c2 is constructed. This algorithm
depends on how layers of sum and product units are con-
nected in c. Algorithm D.1 shows how squared tensorized
layers are constructed for common deep PC architectures.

In deep PC architectures such as RAT-SPNs [Peharz et al.,
2019] and EiNets [Peharz et al., 2020], a tensorized sum-
product layer firstly computes cross-wise products of paired
tensorized inputs, and then computes multiple weighted
sums (as in a mixture). More formally, let cl, cr ∈ Rk be the
left and right tensorized inputs respectively, then the layer
computes W(vec(cl ⊗ cr)) where W ∈ Rk×k2

denotes
the parameters of the sum unit and vec the vectorization
operator. On the other hand, in HCLTs [Liu and Van den
Broeck, 2021] a tensorized sum-product layer computes
element-wise products of their inputs instead. More formally,
using the same notation above, it computes W(cl ⊙ cr)
where W ∈ Rk×k.

In our experiments we make use of element-wise products,
as squaring tensorized layers that compute cross-wise prod-
ucts would be more computationally expensive. In particular,
the time complexity to compute the matrix multiplications
in Algorithm D.1 in case of element-wise products isO(k3),
while for cross-wise products is O(k5).

E SPLINES AS EXPRESSIVE AND
TRACTABLE COMPONENTS

Polynomials defined on fixed intervals are candidate func-
tions to be modeled by input units of squared non-monotonic
PCs, due to the fact they can be negative and their product
can be tractably integrated. In particular, we experiment
with piecewise polynomials, also called splines, which are
briefly introduced below.

A spline function of order k is a piecewise polynomial de-
fined on a variable X , and the n values of X where polyno-
mials meet are called knots. B-splines of order k are basis
functions for continuous spline functions of the same degree.
In practice, we can represent any spline function f of order
k defined over n knots inside an interval [a, b) as a linear
combination of k + n basis functions, i.e.,

f(X) =

k+n∑
i=1

αiBi,k(X) (6)

where αi ∈ R are the parameters of the spline and Bi,k(X)
are polynomials of order k (i.e., the basis of f), which are
unequivocally determined by the choice of the n knots. In
particular, every Bi,k(X) is a non-negative function that is
recursively defined with the Cox-de-Boor formula [de Boor,
1971, Piegl and Tiller, 1995].

Given two splines f, g of order k defined over n knots and
represented in terms of basis functions as in Eq. (6), we can
write the integral of their product as follows.

∫ b

a

f(X)g(X)dX =

k+n∑
i=1

k+n∑
j=1

αiβj

∫ b

a

Bi,k(X)Bj,k(X)

(7)
where αi ∈ R (resp. βj ∈ R) denote the parameters of f
(resp. g). Therefore, integrating product of splines requires
integrating products of their basis functions, which are still
polynomials. Among the various way of computing Eq. (7)
exactly [Vermeulen et al., 1992], we can do it in timeO(n2 ·
k2) by representing the product Bi,k(X)Bj,k(X) as another
polynomial of order 2k + 1 and then integrating it in the
interval [a, b).

12

F PARTITION FUNCTION OVERFLOW

23 24 25 26 27 28 29

Number of variables

1050

10100

10150

10200

Z

+∞

// //

fp32
fp64
fp32 +∞
fp64 +∞

0

120

240

360

lo
g
Z

Figure F.1: Squared non-monotonic PCs cannot scale
without performing computations in log-space. Parti-
tion functions (and their natural logarithm) of squared non-
monotonic PCs with increasing number of variables V com-
puted using 32-bit and 64-bit floating point arithmetic. The
number of layers of the circuits are ⌊log2 V ⌋.

In Fig. F.1 we show the partition function values Z of
squared non-monotonic PCs with Gaussian distributions
as input units and with increasing number of variables. The
parameters of the sum units are initialized by sampling
from a normal distribution N (0, 1). Scaling squared non-
monotonic PCs to more than a few tens (resp. hundreds) of
variables without performing computations in log-space is
infeasible in 32-bit (resp. 64-bit) floating point arithmetic.
Even if we initialized all parameters to be < 1 in absolute
value to make Z smaller, we would encounter underflows
during circuit evaluation. The bottom line is that we have
to perform computations in log-space even in presence of
negative values, and this can be done with the signed log-
sum-exp trick (see Section 3.1).

G EXPERIMENTS

G.1 RING SYNTHETIC DATASET

For the experiments showed in Fig. 1, we sam-
ple 10′000/2′000/2′000 ring-shaped synthetic train-
ing/validation/test examples. Then, we show the density
functions estimated by two Gaussian Mixture Models
(GMM) with 2 and 16 components, respectively, and a neg-
ative GMM (NGMM) with two components. All mixture
models are learned by maximizing the log-likelihood and
by gradient ascent with Adam as optimizer [Kingma and
Ba, 2015], with learning rate 5 · 10−3 and batch size 16.

G.2 SYNTHETIC AND UCI DATASETS

Following [Li et al., 2018] we demonstrate the behavior of
PCs on both synthetic and UCI datasets (see Table G.1).
The four synthetic data sets showed in Fig. 2 are Rings,
Banana, Spiral and Wave (from left to right). We generate
each synthetic data set by sampling 10_000/2000/2000
training/validation/test examples.

Table G.1: Data set statistics. Dimensionality D and num-
ber of examples N for each data set after the preprocessing
by [Papamakarios et al., 2017].

N

D train validation test

POWER 6 1,659,917 184,435 204,928
GAS 8 852,174 94,685 105,206

HEPMASS 21 315,123 35,013 174,987
MINIBOONE 43 29,556 3,284 3,648

G.3 MODEL DETAILS

For the experiments on UCI data sets we follow Peharz
et al. [2019] and randomly derive a structured-decomposable
and balanced region graph for PCs. We do so by randomly
and evenly splitting sets of variables into binary partitions
recursively, and until further splitting is not possible or
would make the region graph unbalanced. Then, monotonic
PCs and squared non-monotonic PCs are constructed by
parametrizing such region graph with layers of sum and
product units. We construct multiple PCs on different ran-
dom region graphs, and then build a monotonic mixture with
them as components. See Appendix G.4 for details about
the hyperparameters.

The tensorized layers in monotonic PCs and squared non-
monotonic PCs compute element-wise products, due to their
efficiency as detailed in Appendix D.

G.4 HYPERPARAMETERS

In this section we detail the hyperparameters used for our
experiments (Section 4). We train PCs by maximizing the
log-likelihood and by gradient ascent with Adam as opti-
mizer [Kingma and Ba, 2015]. We represent the parameters
of sum units in monotonic PCs in log-space and initialize
them by sampling from a Gaussian N (0, 1). By contrast,
the parameters of sum units in squared non-monotonic PCs
are initialized by sampling from a Log-Normal distribution
LN (0, 1). While the parameters of squared non-monotonic
PCs are initialized to be non-negative, they become negative
during training.

Hyperparameters for synthetic data sets. We fix the num-
ber of input units for each feature (i.e., the components) to

13

16 for all PCs, and use univariate B-splines of degree 2 (i.e.,
we use quadratic splines) as input units defined on 32 knots
that are chosen uniformly in the domain space. For all PCs
we fix the batch size to 512 and learning rate to 10−2.

Hyperparameters for UCI data sets. For the experiments
on UCI data sets we sample region graphs randomly and
instantiate tensorized PCs whose sum units have 32 compo-
nents (for both monotonic and non-monotonic PCs). Follow-
ing [Peharz et al., 2019], for POWER, GAS, HEPMASS,
MINIBOONE we repeat this process 2, 4, 8, 16 times, and
put the resulting PCs as components in a monotonic mix-
ture. For PCs with B-splines as input units (Appendix E)
we fix the degree to 2 and we search for the number of
knots in {128, 256, 512}, which are uniformly chosen in the
domain space. For all PCs we search for the batch size in
{512, 1024, 2048} and learning rate in {10−3, 10−2}.

G.5 LOG-LIKELIHOODS ON SYNTHETIC
DATASETS

In Table G.2 we show the average log-likelihoods computed
on unseen samples of the synthetic data sets showed in Fig. 2
(from left to right).

Table G.2: Negative parameters make squared non-
monotonic PCs expressive. Test average log-likelihoods
on synthetic data sets of monotonic PCs (+), squared mono-
tonic PCs (+2) and squared non-monotonic PCs (±2).

Model Rings Banana Spiral Wave

PC + -1.959 -2.489 -2.402 -2.045
PC +2 -1.823 -2.463 -2.314 -1.922
PC ±2 -1.729 -2.395 -2.189 -1.869

14

	Introduction
	Negative Mixtures by Squaring
	Deep negative mixtures via squared PCs
	The Signed Log-Sum-Exp Trick

	Experiments
	Conclusions
	Circuits
	Proofs
	Exponential Separation
	Squaring Deterministic Circuits

	Related Works
	Squaring Tensorized Layers
	Splines as Expressive and Tractable Components
	Partition Function Overflow
	Experiments
	Ring Synthetic Dataset
	Synthetic and UCI Datasets
	Model Details
	Hyperparameters
	Log-Likelihoods on Synthetic Datasets

